Monday, December 25, 2006

 

A field study of the microbiological quality of fresh produce of domestic and Mexican origin.

A field study of the microbiological quality of fresh produce of domestic and Mexican origin.

Int J Food Microbiol. 2006 Nov

Johnston LM,
Jaykus LA,
Moll D,
Anciso J,
Mora B,
Moe CL.
Department of Food Science, College of Life Science and Agriculture, North Carolina State University, Raleigh, NC 27695-7624, USA.
leeann_jaykus@ncsu.edu

Produce is responsible for an increasingly larger proportion of foodborne disease outbreaks. In particular, the globalization of the food supply may introduce new food safety risks and allow widespread distribution of contaminated food, particularly produce. The objectives of this study were to: (i) compare the overall quality of domestic and Mexican produce throughout the packing process; (ii) examine changes in microbiological quality of both domestic and Mexican produce at each stage of production and processing; and (iii) evaluate the prevalence of select pathogens on fresh produce, including leafy green, herbs, melons, and vegetables. Furthermore, we also sought to characterize the antibiotic resistance profiles of Enterococcus faecium and Enterococcus faecalis strains isolated from fresh produce.

A total of 466 produce and matching environmental swab samples was collected from various locations in packing sheds in the southern US from November 2002 through December 2003. These samples were assayed by enumerative tests for total aerobic bacteria (APC), total coliforms, total Enterococcus, and E. coli. Produce samples were also analyzed for the presence of Salmonella, Listeria monocytogenes, Shigella, and E. coli O157:H7. A total of 112 E. faecium and E. faecalis isolates were further screened for antibiotic resistance using a panel of seventeen antibiotics.

Overall, the microbiological quality of fresh produce ranged from 4.0 to 7.9 log(10) CFU/g (APC); less than 1.0 log(10) to 4.5 log(10) CFU/g (coliforms); less than 1.0 log(10) to 4.0 log(10) CFU/g (E. coli); and less than 1.0 log(10) to 5.4 log(10) CFU/g (Enterococcus). No Salmonella, Shigella, or E. coli O157:H7 were detected from the 466 25-g produce samples tested.

However, three domestic cabbage samples were found to be positive for L. monocytogenes. Of the Enterococcus isolates, E. faecium had a higher degree of resistance to antibiotics in general, while Enterococcus spp. isolated from Mexican produce had a higher degree of antibiotic resistance when compared to strains isolated from produce samples of domestic origin. Despite increased attention to the role of imported produce in foodborne disease, this study does not support the assumption that domestic produce is of higher microbial quality than Mexican produce.

PMID: 17045687 [PubMed - indexed for MEDLINE]

* * * * * *

A field study of the microbiological quality of fresh produce.

J Food Prot. 2005 Sep

Johnston LM,
Jaykus LA,
Moll D,
Martinez MC,
Anciso J,
Mora B,
Moe CL.

Department of Food Science, College of Life Science and Agriculture, North Carolina State University, Raleigh, North Carolina 27695-7624, USA.

The Centers for Disease Control and Prevention has reported that foodborne disease outbreaks associated with fruits and vegetables increased during the past decade. This study was conducted to characterize the routes of microbial contamination in produce and to identify areas of potential contamination from production through postharvest handling. We report here the levels of bacterial indicator organisms and the prevalence of selected pathogens in produce samples collected from the southern United States. A total of 398 produce samples (leafy greens, herbs, and cantaloupe) were collected through production and the packing shed and assayed by enumerative tests for total aerobic bacteria, total coliforms, total Enterococcus, and Escherichia coli. These samples also were analyzed for Salmonella, Listeria monocytogenes, and E. coli O157:H7. Microbiological methods were based on methods recommended by the U.S. Food and Drug Administration.

For all leafy greens and herbs, geometric mean indicator levels ranged from 4.5 to 6.2 log CFU/g (aerobic plate count); less than 1 to 4.3 log CFU/g (coliforms and Enterococcus); and less than 1 to 1.5 log CFU/g (E. coli). In many cases, indicator levels remained relatively constant throughout the packing shed, particularly for mustard greens. However, for cilantro and parsley, total coliform levels increased during the packing process. For cantaloupe, microbial levels significantly increased from field through packing, with ranges of 6.4 to 7.0 log CFU/g (aerobic plate count); 2.1 to 4.3 log CFU/g (coliforms); 3.5 to 5.2 log CFU/g (Enterococcus); and less than 1 to 2.5 log CFU/g (E. coli).

The prevalence of pathogens for all samples was 0, 0, and 0.7% (3 of 398) for L. monocytogenes, E. coli O157:H7, and Salmonella, respectively. This study demonstrates that each step from production to consumption may affect the microbial load of produce and reinforces government recommendations for ensuring a high-quality product.

PMID: 16161682 [PubMed - indexed for MEDLINE]






<< Home

This page is powered by Blogger. Isn't yours?