Monday, October 08, 2007

 

Bacterial communications in implant infections: A target for an intelligence war.

Bacterial communications in implant infections: A target for an intelligence war.

Int J Artif Organs. 2007 Sep

Costerton JW, Montanaro L, Arciola CR.
Center for Biofilms, School of Dentistry, University of Southern California, Los Angeles, California - USA.


The status of population density is communicated among bacteria by specific secreted molecules, called pheromones or autoinducers, and the control mechanism is called ""quorum-sensing"". Quorum-sensing systems regulate the expression of a panel of genes, allowing bacteria to adapt to modified environmental conditions at a high density of population. The two known different quorum systems are described as the LuxR-LuxI system in gram-negative bacteria, which uses an N-acyl-homoserine lactone (AHL) as signal, and the agr system in gram-positive bacteria, which uses a peptide-tiolactone as signal and the RNAIII as effector molecules.

Both in gram-negative and in gram-positive bacteria, quorum-sensing systems regulate the expression of adhesion mechanisms (biofilm and adhesins) and virulence factors (toxins and exoenzymes) depending on population cell density. In gram-negative Pseudomonas aeruginosa, analogs of signaling molecules such as furanone analogs, are effective in attenuating bacterial virulence and controlling bacterial infections. In grampositive Staphylococcus aureus, the quorum-sensing RNAIII-inhibiting peptide (RIP), tested in vitro and in animal infection models, has been proved to inhibit virulence and prevent infections.

Attenuation of bacterial virulence by quorum-sensing inhibitors, rather than by bactericidal or bacteriostatic drugs, is a highly attractive concept because these antibacterial agents are less likely to induce the development of bacterial resistance.

PMID: 17918119 [PubMed - in process]

Labels: ,






<< Home

This page is powered by Blogger. Isn't yours?