That's essentially what scientists did when Klebsiella pneumoniae, an often-lethal bacterium, spread through NIH's research hospital in Bethesda, Maryland last year, as described in a study published on Wednesday in the journal Science Translational Medicine.
"With whole-genome sequencing," said microbial geneticist Julie Segre of NIH's National Human Genome Research Institute, who led the study, "we were able to understand how the outbreak was moving through the hospital and identify weaknesses" in infection-control practices, finally halting the outbreak.
The unprecedented effort to use genome sequencing to save patients from an infectious outbreak offers hope that the technique could fight other hospital-acquired infections. These infections kill some 99,000 people die from such infections in the United States every year, estimates the U.S. Centers for Disease Control and Prevention. The added health-care costs, according to the CDC: $4.5 billion a year.
Calling it a "compelling story," virologist and microbe hunter Ian Lipkin of Columbia University in New York City said the NIH scientists' feat shows what ultra-fast whole-genome sequencing can accomplish in so-called microbial forensics. In whole-genome sequencing, machines identify the DNA units that make up an organism's entire genome.
Researchers were able "to implicate 'Patient Zero,' track transmission of a drug-resistant bacterium over the course of an important outbreak and provide insights that will inform infection control and patient care," said Lipkin, director of the Center for Infection and Immunity at Columbia's Mailman School of Public Health and a scientific adviser on the 2011 film "Contagion."
The outbreak at NIH's hospital began last summer. In June a 43-year-old patient with antibiotic-resistant K. pneumoniae, which infects the urinary tract and bloodstream and can cause sepsis, a blood infection, was transferred to its intensive-care unit from a New York City hospital. "Patient Zero" was put in an isolation room; staff and visitors had to wear gowns, masks and gloves to enter.